
CGS 3175: Internet Applications (JavaScript – Part 3) Page 1 © Mark Llewellyn

CGS 3175: Internet Applications
Fall 2007

Introduction To JavaScript – Part 3

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cgs3175/fall2007

CGS 3175: Internet Applications (JavaScript – Part 3) Page 2 © Mark Llewellyn

25. Modify any of the example XHTML
documents that illustrate the intrinsic events to
try some of the intrinsic events that were not
illustrated in the notes such as onmouseup.

Things to Try Yourself

CGS 3175: Internet Applications (JavaScript – Part 3) Page 3 © Mark Llewellyn

Things to Try Yourself
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Triggering Scripts - onmouseover </title>
<style type="text/css">
<!-- body {background-color:#CCFFCC; }

div {border:1px solid black; width:300px; }
-->
</style>
</head>
<body>
<div>
<p onmouseover="alert('Today is '+ Date()) ">Move mouse here for the current
time.</p>
</div>
<p>The rest of the page goes here...</p>
</body>
</html>

CGS 3175: Internet Applications (JavaScript – Part 3) Page 4 © Mark Llewellyn

• Throughout the semester we have always validated our XHTML documents against
the strict data type definition (Strict-DTD) to ensure that our XHTML documents
were well-formed.

• Some JavaScript statements contain symbols such as the less-than symbol (<), the
greater-than symbol (>), and the ampersand (&). As you become a more
sophisticated JavaScript programmer, you will begin to use many of the features
contained in the JavaScript language and will undoubtedly encounter the need to
use these symbols. Unfortunately, these symbols can prevent XHTML documents
from passing validation (particularly under the Strict-DTD).

– Note that there is less of a problem with this when using the Transitional-DTD, but we
do not want to relax our standards.

• This is not a problem at all when using HTML, because any statements inside a
<script> element are interpreted as character data instead of markup.

– A section of a document that is not interpreted as markup is referred to as character data,
or CDATA.

• If you were to validate an HTML document that contained a <script> element,
the document would validate successfully because the validator would ignore the
script section and not attempt to interpret the text and symbols in the JavaScript
statements as HTML or attributes.

Writing Valid JavaScript Code

CGS 3175: Internet Applications (JavaScript – Part 3) Page 5 © Mark Llewellyn

• In contrast, with XHTML documents, the statements
in a <script> element are treated as parsed
character data, or PCDATA, which identifies a
section of a document that is interpreted as markup.

• This means that if you attempt to validate an
XHTML document that contains a <script>
element, it may fail to validate.

– Note that an XHTML document will not necessarily fail to
validate under Strict-DTD just because it contains a
<script> element. In fact, any of the examples that
have appeared in the JavaScript notes thus far, will validate
successfully. However, the right sequence of symbols
inside the <script> element may cause the document
not to validate.

Writing Valid JavaScript Code

CGS 3175: Internet Applications (JavaScript – Part 3) Page 6 © Mark Llewellyn

• To avoid this potential problem, you can do one of two things.

• One option is to move all JavaScript code into an external file (with a .js extension)
as we saw in Part 1 and will see in more detail later in this section of notes. This of
course prevents the validator from attempting to parse the JavaScript statements.

• The second option, and will be a requirement for embedded JavaScript, is to
enclose the JavaScript within a <script> element within a CDATA section.

• The syntax for a CDATA section of an XHTML document is as follows:

/* <![CDATA [*/

statements to mark as CDATA

/*]] > */

• Note that the block comments on the opening and closing portions of the CDATA
section prevent the JavaScript interpreter from attempting to parse the
<![CDATA[and]]> lines as JavaScript!

• The example on the following page illustrates a CDATA section in an XHTML
document. From here on, for embedded JavaScript we’ll use this format to ensure
validation.

Writing Valid JavaScript Code

CGS 3175: Internet Applications (JavaScript – Part 3) Page 7 © Mark Llewellyn

Writing Valid JavaScript Code
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Valid JavaScript for compatibility </title>
</head>
<body>
<script type="text/javascript">
/* <![CDATA[*/

document.write("
 This page illustrates the proper way to embed a
JavaScript script into an
");

document.write("XHTML document. Since JavaScript statements can contain
symbols such as <, >, and & which
");

document.write("used in XHTML and can cause the XHTML validator to
improperly interpret the JavaScript statements
");

document.write("as markup. For this reason, the JavaScript needs to be
interpreted as character data, so it is placed in
");

document.write("CDATA section.
");
/*]]> */
</script>
</body>
</html>

CGS 3175: Internet Applications (JavaScript – Part 3) Page 8 © Mark Llewellyn

Writing Valid JavaScript Code

CGS 3175: Internet Applications (JavaScript – Part 3) Page 9 © Mark Llewellyn

• As we saw in Part 1 of the JavaScript notes, it is quite common to create a library
(a file) of JavaScript scripts which provides any of your Web pages access to the
scripts without having to repeat the writing of the scripts in either the head or body
sections of each document.

• Unless the JavaScript code you intend to use in a document is very short or specific
to only one page, it is usually preferred to place the scripts in a library file for the
following reasons:

– Your document will be neater. Lengthy JavaScript code in a document can be confusing
and makes understanding (“reading”) and maintaining the XHTML that more difficult.
You might not be able to tell at a glance where the XHTML code ends and the
JavaScript code begins.

– The JavaScript code can be shared among multiple Web pages. For example, an e-
commerce site may contain several pages that allow a user to order an item. Each such
page displays a different item but can use the same JavaScript code to gather order
information. Instead of recreating the JavaScript order information code within each
document, the various pages can share a central JavaScript source file. Sharing a single
source file reduces the requirements for disk space and reduces system overhead since
only one copy of the same code needs to be in memory.

– JavaScript libraries hide JavaScript code from incompatible browsers. If your document
contains JavaScript code, an incompatible browser displays that code as if it were
standard text. In contrast, if the code is contained in a library, the incompatible browser
simply ignores it.

Creating A JavaScript Library

CGS 3175: Internet Applications (JavaScript – Part 3) Page 10 © Mark Llewellyn

• While JavaScript libraries are quite common, it is
also quite common to see both libraries and
embedded JavaScript code in Web documents, so you
need to be familiar with both forms.

• Recall that the <script> tag can appear within the
<head> tag and/or the <body> tag.

• As we will see shortly, the more common form of a
script to be included in a library is a function. The
following example illustrates the effect of using a
JavaScript library without functions.

Creating A JavaScript Library

CGS 3175: Internet Applications (JavaScript – Part 3) Page 11 © Mark Llewellyn

/* This is a JavaScript library of scripts */
//SCRIPT #1
//this script writes the date and time onto a page

document.write("</p align='right'> Today is: <i>" + Date() + "</i></p>");
document.write("
");

//SCRIPT #2
//this script returns today's date

var currentTime = new Date()
var month = currentTime.getMonth() + 1
var day = currentTime.getDate()
var year = currentTime.getFullYear()
document.write("Today is: " + month + "/" + day + "/" + year)
document.write("
");

//SCRIPT #3
//this script returns the current time

var currentTime = new Date()
var hours = currentTime.getHours()
var minutes = currentTime.getMinutes()
if (minutes < 10)

minutes = "0" + minutes
document.write("The time is " + hours + ":" + minutes + " ")

if(hours > 11){
document.write("PM")

} else {
document.write("AM")

}
document.write("
");

//SCRIPT #4
//this script simply writes a message

document.write(“
 Hello there! I'm a JavaScript script executing on your behalf.
");
document.write("Please note that since I am not a function and thus not called directly
");
document.write("that all of the other scripts in my library have executed before me, since I
");
document.write("appear last in the library
");

A JavaScript Library

Remember that a JavaScript
library has a “.js” file extension

CGS 3175: Internet Applications (JavaScript – Part 3) Page 12 © Mark Llewellyn

Execution Using A
JavaScript Library

This sample XHTML document does nothing except load and run the scripts in the JavaScript
library named myscriptlibrary2.js

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Adding the date and time to a page via JavaScript </title>
</head>
<body>
<script type="text/javascript" src="myscriptlibrary2.js"></script>
</body>
</html>

CGS 3175: Internet Applications (JavaScript – Part 3) Page 13 © Mark Llewellyn

Execution Using A
JavaScript Library

Remember that a JavaScript
library has a “.js” file extension

Execution of SCRIPT #1

Execution of SCRIPT #2

Execution of SCRIPT #3

Execution of SCRIPT #4

We’ll see shortly how to
use functions to “call” and
execute only one of these
scripts or change the
order of execution or
whatever we want to do
with them.

CGS 3175: Internet Applications (JavaScript – Part 3) Page 14 © Mark Llewellyn

• The values a program stores in computer memory are
called variables. Technically speaking, a variable is
actually a specific address in the computer memory.
The data stored in a variable often changes.

– Think of a variable like a book bag or back pack. You can
put any book you want in the bag and retrieve it later for
use. The books in your bag this semester will probably not
be the same ones in your bag next semester.

• Many programming languages, such as Java and C++
have a very large set of rules that apply to variables.
JavaScript is very loose in how variables can be used.

More JavaScript - Variables

CGS 3175: Internet Applications (JavaScript – Part 3) Page 15 © Mark Llewellyn

• The name you assign to a variable is called an identifier. Although technically
different, you can use the terms variable and identifier interchangeably.

• JavaScript defines the following rules for naming a variable:
– Identifiers must begin with an uppercase or lowercase ASCII letter, dollar sign ($) or

underscore(_). (Older browsers will not accept $.)

– Numbers can appear in the identifier, but not as the first character.

– No spaces are allowed in the identifier.

– You cannot use any reserved word as an identifier (see next page.)

• Some examples:

Valid identifiers: Angela, num1, _newt, $amount, debi

Invalid identifiers: Didi Thurau, 16_Nov, *69

• Variable names should be descriptive not cryptic. Convention dictates that variable
names begin with a lowercase letter and each additional word in the identifier
begins with an uppercase letter. Some examples of conventional variable names
are: productDate, myLastName, birthDate, and myLastLapTime.

Naming Variables

CGS 3175: Internet Applications (JavaScript – Part 3) Page 16 © Mark Llewellyn

Reserved Words In JavaScript

superindouble

withstaticimportdo

whileshortimplementsdelete

voidpublicgotodebugger

varprotectedfunctioncontinue

typeofprivateforconst

trypackagefloatclass

truenullfinallychar

throwsnativefalsecase

throwlongextendsbyte

thisinterfaceexportbreak

synchronizedintenumboolean

volatilereturnifdefault

transientnewfinalcatch

switchinstanceofelseabstract

CGS 3175: Internet Applications (JavaScript – Part 3) Page 17 © Mark Llewellyn

• Before you can use a variable, you need to declare it (basically
it means create it). While there are different techniques to
create variables, we’ll stick with the most common and
simplest form which uses the reserved word var.

• For example, to create a variable named myVariable, you
need to write this statement:

var myVariable;

• All this statement does is make some memory location be
accessible to your code whenever you refer to it by this name.

Using Variables

myVariable

computer memory

CGS 3175: Internet Applications (JavaScript – Part 3) Page 18 © Mark Llewellyn

• Declaring a variable just sets aside memory for it, it
does not assign any value to the memory.

• Often you want to give the memory location, hence
the variable, some initial value. The shorthand
notation for this occurs at the same time as the
declaration as follows:

var myVariable = value;

• Examples: var myName = “Mark”; //literal string
var roomNumber = 104; //a number

var myNum = “69”; //literal string

Using Variables

CGS 3175: Internet Applications (JavaScript – Part 3) Page 19 © Mark Llewellyn

• While some variables will be used only internally to
the JavaScript, others will need to be sent to the Web
page for display.

• This is quite simple in JavaScript and is basically no
different than what we have already been doing with
our simple scripts that have been printing text
(strings) to the Web page.

• The next page illustrates a simple XHTML document
with an embedded JavaScript that uses a variable
which is sent to the Web page for rendering by the
browser.

Writing A Variable’s Value To A Web Page

CGS 3175: Internet Applications (JavaScript – Part 3) Page 20 © Mark Llewellyn

Writing A Variable’s Value To A Web Page - Example

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title> Writing a JavaScript variable to a Web page </title>
</head>
<body>
<h1> Thanks for using JavaScript <img src="smiley1.jpg" alt="a smiley face"
/> </h1>
<h2>
<script type="text/javascript">
/* <![CDATA[*/

var userName = "Tiffany";
document.write("
 Welcome ");
document.write(userName);
document.write(" !!
");

/*]]> */
</script>
</h2>
</body>
</html>

CGS 3175: Internet Applications (JavaScript – Part 3) Page 21 © Mark Llewellyn

Writing A Variable’s Value To A Web Page - Example

This works great if
all of the visitors to
your site are named
Tiffany, otherwise it
won’t be too useful!

CGS 3175: Internet Applications (JavaScript – Part 3) Page 22 © Mark Llewellyn

• To make your Web page more interactive, you obviously need some way
to receive values from the visitor (we’ve already done this to some extent
using only XHTML with forms).

• In the previous example, things worked well if all the visitors to our Web
page were named Tiffany. If your name happens to be Debi, the page
doesn’t really seem too personal!

• What we need to do is prompt the visitor to tell us their name, then we can
assign that to a variable and use the value whenever it seems appropriate.

• The prompt() method is a method of the window object (just like the
alert() method that we’ve already used in the intrinsic event examples
to display the date and time). Normally the prompt() method is used in
conjunction with a variable, so that the incoming data is stored in the
variable.

someVariable = prompt(“prompt message”);

• The following example develops a modified version of the previous
example using a prompt.

Assigning Variable Values Using A Prompt

CGS 3175: Internet Applications (JavaScript – Part 3) Page 23 © Mark Llewellyn

Assigning Variable Values Using A Prompt - Example
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title> Writing a JavaScript variable to a Web page using a prompt </title>
</head>
<body>
<h1> Thanks for using JavaScript
</h1>
<h2>
<script type="text/javascript">
/* <![CDATA[*/

var userName = "";
userName = prompt("Hi! Please tell me your name");
document.write("
 Welcome ");
document.write(userName);
document.write(" !!

");
document.write("Welcome to our Web site...We hope you enjoy your stay "

+ userName + "!
");
/*]]> */
</script>
</h2>
</body>
</html>

CGS 3175: Internet Applications (JavaScript – Part 3) Page 24 © Mark Llewellyn

Example – Internet Explorer Version

Initial page

After visitor clicks “OK” in prompt window

CGS 3175: Internet Applications (JavaScript – Part 3) Page 25 © Mark Llewellyn

Example – FireFox Version

Initial page After visitor clicks “OK” in prompt window

CGS 3175: Internet Applications (JavaScript – Part 3) Page 26 © Mark Llewellyn

Example – Opera Version

Initial page After visitor clicks “OK” in prompt window

CGS 3175: Internet Applications (JavaScript – Part 3) Page 27 © Mark Llewellyn

• A function is a set of JavaScript statements that
perform some task.

• Every function must have a name and is invoked (or
called) by other parts of a script. A function can be
called as many times as needed during the running of
a script (just like you can use the value of a variable
as many times as you need).

• Look at the rendering of the XHTML document
shown on the next page. Notice that the date and
time appear three times. The XHTML document that
produced this is also shown. Notice that the script to
produce the date and time, appears three times.

Functions In JavaScript

CGS 3175: Internet Applications (JavaScript – Part 3) Page 28 © Mark Llewellyn

Functions In JavaScript
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-
strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Adding the date and time to a page via
JavaScript </title>
</head>
<body>
<div style="align:left">
<i> <script type="text/javascript">

document.write("Today is: " + Date());
</script> </i>

<h2> Some text goes here. </h2>
</div>
<div style="align:right">
<i> <script type="text/javascript">

document.write("Today is: " + Date());
</script> </i>

<h2> Some more text goes here.</h2>
</div>
<div style="align:left">
<i> <script type="text/javascript">

document.write("Today is: " + Date());
</script> </i>
 </div>
</body>
</html>

CGS 3175: Internet Applications (JavaScript – Part 3) Page 29 © Mark Llewellyn

• What a function allows us to do is simplify our
XHTML document, by not requiring us to duplicate
the script each time we would like to have its effect
placed into the document.

• Look at the next page, which produces an identical
rendering in a browser. Notice that the code contains
only a single appearance of the script code, this time
as a function.

– In this example, since the script itself is small, there is not a
lot of space saved using a function, but at least we only had
to write the actual script once. We’ll see more advantages
with functions as we progress to larger examples.

Functions In JavaScript

CGS 3175: Internet Applications (JavaScript – Part 3) Page 30 © Mark Llewellyn

Functions In JavaScript
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-
strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Adding the date and time to a page via
JavaScript </title>
<script type="text/javascript">

function writeDateAndTime() {
document.write("Today is: " + Date());

}
</script>
</head>
<body>
<div style="align:left">
<i> <script type="text/javascript">

writeDateAndTime();
</script> </i>

<h2> Some text goes here. </h2>
</div>
<div style="align:right">
<i> <script type="text/javascript">

writeDateAndTime();
</script> </i>

<h2> Some more text goes here.</h2>
</div>
<div style="align:left">
<i> <script type="text/javascript">

writeDateAndTime();
</script> </i>
 </div>
</body> </html>

CGS 3175: Internet Applications (JavaScript – Part 3) Page 31 © Mark Llewellyn

26. Modify the example XHTML document on
page 20 so that it uses a function to print
Tiffany’s name.

Things to Try Yourself

